Structural roles of cysteine 50 and cysteine 230 residues in Arabidopsis thaliana S-adenosylmethionine decarboxylase.

نویسندگان

  • Sung-Joon Park
  • Young-Dong Cho
چکیده

The Arabidopsis thaliana S-Adenosylmethionine decarboxylase (AdoMetDC) cDNA (GenBank U63633) was cloned. Site-specific mutagenesis was performed to introduce mutations at the conserved cysteine Cys(50), Cys(83), and Cys(230), and lys(81) residues. In accordance with the human AdoMetDC, the C50A and C230A mutagenesis had minimal effect on catalytic activity, which was further supported by DTNB-mediated inactivation and reactivation. However, unlike the human AdoMetDC, the Cys(50) and Cys(230) mutants were much more thermally unstable than the wild type and other mutant AdoMetDC, suggesting the structural significance of cysteines. Furthermore, according to a circular dichroism spectrum analysis, the Cys(50) and Cys(230) mutants show a higher a-helix content and lower coiled-coil content when compared to that of wild type and the other mutant AdoMetDC. Also, the three-dimensional structure of Arabidopsis thaliana AdoMetDC could further support all of the data presented here. Summarily, we suggest that the Cys(50) and Cys(230) residues are structurally important.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Site-directed mutagenesis of rat liver S-adenosylmethionine synthetase. Identification of a cysteine residue critical for the oligomeric state.

We have examined the functional importance of the cysteine residues of rat liver S-adenosylmethionine synthetase. For this purpose the ten cysteine residues of the molecule were changed to serines by site-directed mutagenesis. Ten recombinant enzyme mutants were obtained by using a bacterial expression system. The same level of expression was obtained for the wild type and mutants, but the rati...

متن کامل

Regulation of plant glycine decarboxylase by s-nitrosylation and glutathionylation.

Mitochondria play an essential role in nitric oxide (NO) signal transduction in plants. Using the biotin-switch method in conjunction with nano-liquid chromatography and mass spectrometry, we identified 11 candidate proteins that were S-nitrosylated and/or glutathionylated in mitochondria of Arabidopsis (Arabidopsis thaliana) leaves. These included glycine decarboxylase complex (GDC), a key enz...

متن کامل

Genomics and localization of the Arabidopsis DHHC-cysteine-rich domain S-acyltransferase protein family.

Protein lipid modification of cysteine residues, referred to as S-palmitoylation or S-acylation, is an important secondary and reversible modification that regulates membrane association, trafficking, and function of target proteins. This enzymatic reaction is mediated by protein S-acyl transferases (PATs). Here, the phylogeny, genomic organization, protein topology, expression, and localizatio...

متن کامل

Crystal structure of RumA, an iron-sulfur cluster containing E. coli ribosomal RNA 5-methyluridine methyltransferase.

RumA catalyzes transfer of a methyl group from S-adenosylmethionine (SAM) specifically to uridine 1939 of 23S ribosomal RNA in Escherichia coli to yield 5-methyluridine. We determined the crystal structure of RumA at 1.95 A resolution. The protein is organized into three structural domains: The N-terminal domain contains sequence homology to the conserved TRAM motif and displays a five-stranded...

متن کامل

Cysteine cathepsins are central contributors of invasion by cultured adenosylmethionine decarboxylase-transformed rodent fibroblasts.

Adenosylmethionine decarboxylase (AdoMetDC), a key enzyme in the biosynthesis of polyamines, is often up-regulated in cancers. We have demonstrated previously that overexpression of AdoMetDC alone is sufficient to transform NIH 3T3 cells and induce highly invasive tumors in nude mice. Here, we studied the transformation-specific alterations in gene expression induced by AdoMetDC by using cDNA m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biochemistry and molecular biology

دوره 35 2  شماره 

صفحات  -

تاریخ انتشار 2002